Article 2214

Title of the article

ON A DIFFERENCE METHOD OF POTENTIAL FIELDS’ EXTENSION 

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Ryazantsev Vladimir Andreevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), ryazantsevv@mail.ru 

Index UDK

518.5 

Abstract

Background. The problem of potential fields’ extension rises in many branches of physics and technology: in geophysics in extension of fields measured on the Earth’s surface, in the depth of the Earth, in meteorology when determining the limits of atmospheric fields, in defectoscopy for research of materials inner properties without destruction thereof and in a number of other branches. In spite of the fact that for all such problems researchers suggest different methods, as a rule, all of them are reduced to Fredholm integral equations of first kind, which are the illconditioned problems. As proved by numerical experiments, application of classical difference methods is impossible due to instability thereof. As the difference schemes are characterized by simplicity and performance, of considerable interest is development of special stable schemes. The article is devoted to development of stable difference schemes of potential fields’ extension.
Materials and methods. Development of difference schemes and potential fields’ extension are based on optimal methods of approximation of potential fields belonging to the function classes Qr,γ (Ω,M) , Br,γ (Ω,M) , where Ω is the area into which a field is extended. The nodes of local splines, being the optimal methods of approx. imation of function classes Qr,γ (Ω,M) and Br,γ (Ω,M) , act as the nodes of the difference schemes.
Results. The authors developed the stable difference schemes being the effective method of potential fields’ extension.
Conclusions. The researchers proved the possibility of potential fields’ extension by means of the difference methods. 

Key words

potential fileds, difference schemes, non-uniform mesh, stability, optimality. 

Download PDF
References

1. Boykov I. V., Boykova A. I. Izvestiya RAN. Fizika Zemli [Proceedings of the Russian Academy of Sciences. Physics of the Earth]. 1998, no. 8, pp. 70–78.
2. Boykov I. V., Boykova A. I. Izvestiya RAN. Fizika Zemli [Proceedings of the Russian Academy of Sciences. Physics of the Earth]. 2001, no. 12, pp. 78–89.
3. Boykov I. V., Boykova A. I. Izvestiya RAN. Fizika Zemli [Proceedings of the Russian Academy of Sciences. Physics of the Earth]. 2003, no. 3, pp. 87–93.
4. Boykov I. V. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 1998, vol. 38, no. 1, pp. 25–33.
5. Boykov I. V. Optimal'nye metody priblizheniya funktsiy i vychisleniya integralov [Optimal methods of function approximation and calculation of integrals]. Penza: Izd-vo PenzPGU, 2007, 236 p.
6. Andreev B. A., Klushin I. B. Geologicheskoe istolkovanie gravitatsionnykh anomaliy [Geological interpretation of gravity anomalies]. Leningrad: Nedra, 1965, 495 p.
7. Boykov I. V., Boykova A. I., Kryuchko V. I., Filippov A. V. Geofizicheskiy zhurnal [Geophysical journal]. 2007, vol. 29, no. 4, pp. 67–82.
8. Gyunter N. M. Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoy fiziki [Potential theory and application thereof in basic problems of mathematical physics]. Moscow: GITTL, 1953, 415 p.
9. Zhdanov M. S. Analogi integrala tipa Koshi v teorii geofizicheskikh poley [Analogs of Cauchy integrals in the theory of geophysical fields]. Moscow: Nauka, 1984, 327 p.
10. Boykov I. V., Kravchenko M. V. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2010, no. 4 (16), pp. 101–110.
11. Mikhaylov V. O., Diaman M. Izvestiya RAN. Fizika Zemli [Proceedings of the Russian Academy of Sciences. Physics of the Earth]. 2006, no. 12, pp. 3–10.

 

Дата создания: 19.08.2014 09:11
Дата обновления: 02.09.2014 11:27